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ABSTRACT ‘ qu'?

Synthesis has been defined as the rational directed evolu-
tion of a system configuration which, in terms of a defined
criterion, efficiently performs a set of specified functional
purposes. This document presents the application of the syn-
thesis concept to a system with an aeroelastic technology.
Specifically, the system is a hollow symmetric double wedge air-
foil. There are two design variables;airfoil thickness and
chord length, Behavior constraints are root angle of attack,
tip deflection, flutter Mach number, and root stress. Side
constraints on the design parameters are provided. The basic
criterion function is the total energy required to drive the
airfoil through a sequence of flight conditions. Trade off of
weight versus energy is studied using airfoil weight as an
additional behavior constraint. The gradient steep-descent
alternate step synthesis method is used. Numerical results
of three example syntheses and a trade-off study are included,
The results indicate that the synthesis concept may be applied
successfully to an aeroelastic systems The study should be
extended to consider the system as a plate structure rather than

assuming beam type structural action.
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SYMBOLS

free stream speed of sound (ft/sec)

area of gross cross section (ftz)

area of internal cross-section (ftz)

maximum allowable root angle of attack in qth
flight condition (rad.)

airfoil chord length (ft))

bending flexibility influence coefficients (ft/1b)

torsional flexibility influence coefficients
(rad/ft.1b)

wing skin thickness (feet)

total drag (1bs)

friction drag (1bs)

maximum allowable lcading edge tip deflection in qt
flight condition (ft)

Young's modulus (lbs/ftz)

shear modulus (lbs/ftz)

elastic axis deflection (ft)

/-1 (when not used as an index)

reduced frequency

bending stiffness influence coefficients (lbs/ft)

torsional stiffness influence coefficients
(ft-1bs/rad)

airfoil semi-span (ft)

h



Re

SMAX q

SYMBOLS (continued)

1ift perturbation at ith airfoil segment (1lbs)

lift supplied by ith airfoil segment (1lbs)

required airfoil payload (1bs)

dimensionless lift coefficients for flutter analysis

Mach number

flutter Mach number

aerodynamic twisting amount at the ith segment
(ft-1bs).

moment perturbation at ith airfoil segment
(ft-1bs)

dimensionless moment coefficients for flutter analysis

number of airfoil segments

free stream atmospheric pressure (lbs/ftz)

aerodynamic pressure on lower airfoil surface
(1bs/£t%)

aerodynamic pressure on upper airfoil surface
(1bs/£t?)

dimensionless mass radius of gyration about elastic
axis

Reynold's number

number of flight conditions

R flight

maximum allowable root stress in the qt
condition (lbs/ftz)

time (sec)
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w(x,y)

WGT

WMAX

SYMBOLS (Continued)

time in qth flight condition
airfoil thickness (ft)
free stream temperature (°R)
flight speed (ft/sec)
airfoil middle surface deflection (ft)
leading edge tip deflection (ft)
actual total airfoil weight (1bs)
maximum allowable airfoil weight (1bs)
chordwise coordinate
dimensionless distance from elastic axis to

center of gravity
spanwise coordinate
transverse coordinate
elastic twist angle (rad)
root angle of attack (rad)
synthesis move size control parameter
flutter frequency parameter = (ma/m)z
dimensionless mass density ratio
absolute viscosity (lbs-secz/ftz)
participation coefficient for flutter analysis
airfoil material density (lbs-secz/ft4)
free stream air density (lbs-secz/ft4)

solidity ratio

vii




SYMBOLS (Continued)

flexure stress (lbs/ftz)

principal stresses at root (lbs/ftz)

thickness ratio (T/C)

frictional stress (lbs/ftz)

torsional shear stress (1bs/ft2)

transverse shear stress (lbs/ftz)

normalized composite behavior constraint

energy criterion function (ft-1bs)

harmonic oscillation frequency (rad/sec)

bending vibration frequency of wing in vacuum (rad/sec)

torsional vibration frequency of wing in vacuum
(rad/sec)

frequency ratio (wh/ma)2
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Chapter 1
INTRODUCTION

The broad objective of the structural synthesis research
program is to bring an increasingly meaningful class of struc-
tural design problems within the grasp of rational and directed
optimization in terms of realistic criteria.

Previous studies, such as the truss(l) and waffle plate(z)
synthesis work have dealt with structural systems where static
structural analysis and elastic stability theory provided the
governing technology employed to predict the behavior of any
particular design.

These early structural synthesis studies led to the idea
that it would be interesting to explore the potential of the
synthesis concept for engineering systems governed by techno-
logies such as dynamics, aeroelasticity, and thermoelasticity.

The development of a synthesis capability for an automated
optimum design of a simple shock isolator is reported in Ref. 3.
The results reported in Ref. 3 illustrate the feasibility of
applying the synthesis concept to a problem in which the govern-
ing . technology is dynamics.

This document reports on the application of the synthesis
concept to an engineering system where the governing technology

is aeroelasticity.




Within the aeroelastic technology itself, it is customary
to make a clear distinction between static aeroelastic analyses
and dynamic aeroelastic analyses. In static aeroelastic analyses
the accelerations vanish and problems reduce to the determination
of deformation and stress distributions under constant (with time)
aerodynamic forces, Dynamic aeroelastic analyses, on the other
hand, involve aerodynamic forces which are functions of time.
These time dependent forces induce accelerations into the system,
and so inertial forcesmust be considered as well as aerodynamic
and elastic forces.

Collar(4) has classified problems in Aeroelasticity by
means of a "triangle of forces" (Fig. 1). Each type of aero-
elastic phenomon may be located on the diagram according to its
relation to the three pertirent forces, inertial (I), aerodynamic
(A), and elastic (E). Therefore, for example, because 1lift (L)
and drag (D) depend only on aerodynamic and elastic forces, they
are located on the aeroelastic triangle as shown in Fig. 1.
Likewise, because flutter (F) and buffeting (B) depend on all
three forces, they are depicted in the center of the triangle,
Other realms of technology may also be shown on the triangle.
Mechanical vibrations (V) and dynamic stability of aircraft (DS),
while not being aeroelastic phenomena, are shown on the diagram.

The technology for the system to be studied in this report
involves (L), (D), and (F) in Fig. 1. In particular, it is a

uniform hollow symmetric double wedge airfoil of semi-span %




chord C, depth T, and solidity ratio pse The solidity ratio is .
defined as the ratio of the net cross-sectional area to the
cross-sectional area of the entire section. Consider that the
airfoil is subjected to a set of continuously changing flight
conditions in the course of a mission. Assume that the total
mission may be idealized as the sum of S sub-missions, each of
which is defined by a set of prescribed parameters, Each discrete
set of prescribed parameters defining a sub-mission will hence-
forth be known as a flight condition, and the prescribed parameters
of a flight condition are flight altitude (ALT), Mach Number (M),
time in flight (t), and required payload (Lp)o
The behavior of the system under a series of flight

conditions will be evaluated by the determination of certain
pertinent quantities which hereafter will be termed behavior
functions. In any one flight condition, these behavior functions
will be assigned extreme values which may not be violated. They
are, in effect, inequality constraints on the system. The
behavior functions will be taken as root angle of attack (ao),
stress at root (o), tip deflection at the leading edge (wT), and
flutter Mach number (MF)e

In order to distinguish between acceptable designs in an
effort to determine the best design configuration, a criterion
function (¢) must be introduced. An optimum value of this criter-
ion function will define the best design. The basic criterion

function in this study is the total energy required to complete a



‘mission,

Both the behavior functions and the criterion function
are complicated functions of the airfoil configuration variables
in addition to depending on the flight conditions. Since this
report considers a uniform airfoil of fixed semi-span, and
solidity ratio, the airfoil configuration is given by chord
length (C), and depth (T). These quantities will be called the
design variables,

A succinct qualitative statement of the problem may now be
given as: To determine the design variables (T,C) of a uniform,
hollow, symmetric double wedge airfoil, subjected to a sequence
of flight conditions, such that the behavior functions assume
acceptable values and the criterion function is optimized.

The next three chapters will contain the analysis of the
system, This analysis will permit prediction of the behavior
of a proposed trial design. For a particular trial design, it
nust be possible to evaluate the following for each flight
condition:

1. leading edge tip deflection (wT)

» root angle of attack (ao)
s root stress (o)

2
3
4, flutter Mach number (MF)
5. pressure drag (Dp)

6

» friction drag (Dg)



Chapter II contains a discussion of the first three
quantities above under the title "Static Aeroelastic Analysis'.
Chapter III contains a discussion of (4) above as "'Dynamic
Aeroelastic Analysis'', and (5) and (6) above are steady state
phemonena which will be discussed in Chapter IV under the
title "Criterion Function".

The remaining three chapters are devoted to discussion
of the synthesis technique used, results obtained, and conclu-
sions, respectively,

The appendix contains an explanation of the computer

program and a sample program listing,




Chapter II

STATIC AEROELASTIC ANALYSIS

2,1 Force and Displacement Distributions

Due to motion of the airfoil through the atmosphere, a
pressure will be imposed on its upper and lower surfaces. The
vertical component of the difference between the pressures on
the upper and lower surfaces integrated over the airfoil surface
area is defined as the lift of the airfoil.

Various aerodynamic theories give expressions for the
determination of this pressure differential. The simplest of
these to apply is the so-called '"Piston Theory" of Ashley and

(5)

Zartarian‘®’/, whereby the pressure differential
Ap = p - Py (2.1)
at a point on the airfoil surface is dependent only on the
deflection and velocity at that point. This theory is valid
in the Mach number range
M > 2.5

which will constitute the range of interest in this study.

According to Mills(6), the pressure differential per
unit area of the middle surface of the airfoil using Piston

Theory may be taken as (see Fig. 3).




8p = pp - Py=2¥p,M(a - %—¥0 1+ ; Ly = x& ]
(2,2)
"ZYa}:wi-‘%[l.’.Y;lMaaxZS]
where
P, = free stream atmospheric pressure (lbs/ftz)
Y = specific heat ratio - 1.4
oy = root angle of attack (radians)
w(x,y) = deflection of airfoil middle surface (ft.)
M = Mach number

ZZG(x)-= airfoil thickness distribution (Z6 is the
equation of the surface of the airfoil)
a = free stream speed of sound (ft/sec)

Ma = U; U= airfoil velocity (ft/sec)

Since, at present, interest is to be focused on static

aeroelastic phenomena, let

[+ %4 Na3)
ot =
o

|

Then (2.2) becomes

3 Z

+ 1 $
) M % ] (2.3)

= - oW Y
bp = 2y p M (a - 53 [1+

The 1ift developed by the airfoil is found by integrating
equation (2.3) over the area of the middle surface so that, for

small angle of attack




Lift = L A p(x,y) dx dy (2.4)

A
Assuming that the wing behaves primarily like a beam
rather than a plate, the deformation of the middle surface may

be represented as (see Fig. 3),
wix,y) = h(y) - xa (y) (2.5)
assuming there is no chordwise bending, and small twist angle

a(}’) 0

Now to perform the indicated integration in equation (2.4),

introduce
z =-1 I c
s 'CX"'Z Oi)(f_f (2,6)
- T T _C
R R | 7 2x 20
Note that
3 X y °

From an examination of equations (2.3) and (2.7) it is apparent
that 1ift L will not be dependent on the vertical deflection of
the airfoil, but only on its angular rotation.

Performing the integration indicated in equation (2.4) over

the chordwise variable x, the lift supplied is

Lly) = 2y p, MC [ao + a(y)] (2.8)




per unit span. Assuming further that L(y) is approximately
constant for some finite length of wing §5 where N is the num-
ber of segments into which the continuous airfoil is discretized,
equation (2.8) takes the form

L

Li = 2y pr(ao + ai) C N (2,9)

The total 1ift supplied must equal the prescribed payload (Lp)
plus the airfoil weight (WGT), as

(Lp + WGT) = Ly = L. (2,10)

To determine Li by equation (2.9), a, the elastic twist angle,
must be known. Consider the aerodynamic moment per unit span

as given by (Fig. 3c)

-M () = L(y) e (2.11)

or in terms of Ap(x,y)

M. (y) = l Ap(x,y) x dx dy (2.12)
A

where the postive moment vector acts in the negative y direction.

Performing the integration in (2.12) over x, as before, and

assuming Ap(x,y) approximately constant over the span interval
N

M, =-3yp M TCE gD (a, *+ o) (2.13)

i



Rewriting (2.9) and (2.13) in matrix form as

> ->
L = k' ay * k' a (2.14)
>
M, = k Eo + k o (2.15)
where
(ag Ch
_&o = < c > -(; = 4 0.2}
\’) \aN

and the definitions of the scalar constants k' and k are obtained
by comparison of (2.9) with (2.14) and (2.13) with (2.15).

Introducing torsional flexibility influence coefficients, Ca_

ij
N
a = ] C,.. M. (2.16)
i=1 v
where the C are given by(7’8)
¢ - 2. LG-L; i=1,---,N
» ] ’
%3 GT’Cd N z
j>i (2.17)
CG = Ca
ij ji

10




N '
b4

and where d is the skin thickness of the airfoil as given by "

1/2
224l - [(12+41) - 1( o ) Y12+ 1/12 + 2]

d=§<:( ) (2.18)

Vié + 1/ 1t + 2

and p_ is the prescribed solidity ratio. The solidity ratio

s
is defined as (see Fig. 3a)the ratio of the area of the nect

cross section to the area of the entire cross section,

CoMh L -2 /B (-2 A+ 133 g
S
A TC

Also, using bending flexibility influence coefficients, Ch. ’

1j
N
hy = I G . L, (2.20)
=1 Y
where
8 2.3 1 . 1., 1.2
G,.= @ ¢ )3G- PG - )
1 T3¢ - (T-2a/52+1) > (C-2d/1+1/<2 )
3
S e-PPe -]
= i=j=1, ===, N (2.21)
O Gy |
The last term in (2.21) is defined as
ci-jss = G- iy j (2.22)

11




3

<i—=j3> = 0 j >1i (2.22 cont,)

An iterative technique must be resorted to in order to determine

> > > +

o, Mt’ L, and h, Casting (2.16) and (2.20) in matrix form

gives

et
I

[c,] M, (2.23)

=24
]

[c1L (2.24)
Then, from (2.15) and (2.23)
a = [c,] [ Zo + k3] (2.25)

>
As a first approximation for @, assume the wing is rigid,

and thus that,

y + 1 3 ZG
Ap = 2y pM|[1+ > M T ] g (2.26)
f
I = Ap dA = 2leprao

and since Ly is known when the design variables are known

wa

2y M P,

aél) . T (2.27)

The super (1) indicates that this is in fact only a first approxi-

mation to the actual value of % Now from (2.25)

- -1
a = k[I-kI[c]] [C]

-
a

5 (2.28)

12




Substitution of (2,27) into (2.28) gives a first approxi-

. -»
mation to a, as

3 - kp-xent ey @ (2.29)
and from (2.14)
R 1
ALY HORSY 3 (2.30)
summing
A B ALY (2.31)
i=1

Since L%l) will not in general be equal to Lr until the correct
twist distribution is obtained, the difference between L%l) and

LT is a measure of the correction needed. Then

p1® o O

(D

. -»>
and the correction to o

LT (2.32)

may be computed as

RS,

A agl) - (2.33)
2y prﬂ\d
and
A Zgl) - A Zgl) (2.34)

The sequence of operations indicated by equations (2.29) through
(2.34) is now repeated until
N
DR 7 R W (R (2.35)

i=1

13




where ¢ 1s an arbitrary small value and n is the number of cycles
required to satisfy equation (2.35). When (2.35) is satisfied,
.c;(n)is the converged twist distribution and -I:(n) is the con-
verged lift distribution. Also the elastic axis deflection
distribution, ;(n). may be computed from (2,24) and the aero-
dynamic moment ﬁt(n) from (2.15). The deflection of the leading

edge may be computed from (2.5) with x = - -g- , to give
wp® = ™o & g (2.36)

2.2 Stress Analysis

In part 2,1 of this chapter, the force and displacement
distributions over the wing were determined. Now these will be
utilized to determine the root stress,

The stresses at the root are

1) flexure stress due to Li
2) transverse shear stress due to L.l

3) torsional shear stress due to Mt
‘ i

1) Flexure Stress
This is given by

MrT

(Oy) = n—— . (2.37)

max XX
where M - bending moment at root

Ixx= moment of inertia about the x axis at root.

1k




Now

1 e ) 1, 2
M =Lysg*tLygr-—- +LWN-2¢g
Therefore
N
Moo= f I G-P Li(“) (2.38)
i=1
and
I - 22 A = z%-[CIS-(C-Zd/hl/rz)(T-Zd»’:z_:l)s]
A

(2.39)
so that finally,

N

L ) Z (i- p LM

CT- (C-2d /TFI777) (T-2d /%33

()‘24 )
o )~ Qq (

(2.40)
2) Shear Stress due to Transverse Load is
() = LAY (2.41)
v, /1+1/ <2
Ixx d v1+1/+
The maximum value of (2.41) occurs at z = 0, and
Q = ( Z dA (2.42)
A

where A1 is the cross sectional area above the z = 0 plane. Then

q = T%'TC(T‘;%:) [T(2-p)-(1-p,) dVi2+ 1 | (2.43)

Also, V= ] Lgn), the converged total 1lift on the airfoil.
i=1

15




The stress is then

T (2-0))-(1-p)d /2%+ 1 N

(n)
- Y2 nax Z(d : (7:323 CT°- (C-2d/1+1/12) (T-2a/2+D)° * . :
(2.44)
3) Shear Stress due to Torsion.,
The torsional shear stress in the thin-walled, hollow
wing due to a twisting moment Mt is given by(g)
Mt
Tsy = ;“‘f&‘ (2.45)

where A is the cross sectional area taken to the center of the

thin wall, as

- 1
A= 3 (T -d /12+ 1) (C - d /I+1/x9) (2.46)
and s is a circumferential coordinate in the plane of the
cross section. Using (2.46), (2.45) becomes, at the wing root
N
g, = 1 I M, (2.47)
(T-a/22 +1) (C-d A+1/<%)d  i=1 *

A numerical example was undertaken to determine the

relative sizes of 1 )Vmax’ and (oy). Both of the shear

sy’ (Tyz
stresses were found to be small compared to °y' the bending

stress,

The magnitude of the shear stress given by (2.47) is the
same for every point in the wall of the wing root cross-section.
Therefore, the principal stress composed of °y and Tsy at point

x=0, z-= %- will be taken to describe the root stress condition.

16




The principal stresses at this point are given by

o_+to o_ -0 2
2t [+ (1)

1
g = ..2."
1,2 2 - sy

2 (2.48)

where Ux =0

Therefore, substitution of (2.47) and (2.40) into (2.48) yields

N
o, - 12 (4/N) T 1 G- b L
e - (c-2d /1D (1-2a/52 +1)° is1
N
2
T 12 (4/N) T I G- b L)
CT° - (C-2d /T*1/<2) (T-2d/ %+ 1) i=1
) N 2 1
+ M, ) ]2
(T - ¢A=T)(C-d A7 ., Y
(2.49)

A satisfactory design based on the Von Mises Criterion will be
one for which .
2 2

sMAX > [o," +o0,” -0, o, 2 (2.50)

where SMAX is the yield stress in uniaxial tension.

17



Chapter III
DYNAMIC AEROELASTIC ANALYSIS

Flutter, which is the topic of this chapter,can be defined
as the dynamic instability of an elastic body in an airstream,
The flutter condition is determined by consideration of a
perturbation in deflection about the deflected static equili-
brium position of the airfoil. Due to this perturbation in
deflections, the aerodynamic lift and moment distributions are
changed. Under certain conditions, the magnitude of the deforma-
tion perturbations may grow with time and cause the failure of
the wingo(11 )

Consider that the wing is moving through air at some Mach
nunmber M, and is suddenly disturbed, as by a gust. Then the
subsequent motion will either be damped out, remain constant,
or increase. As the speed is increased from zero to some value
just less than a critical Mach number, M, the perturbation will
damp out, At the critical speed condition (M = MF), neutral
stability exists, and for speeds greater than the critical speed,
divergent oscillations may result, which may cause structural
failure. The flutter (or critical) Mach number, Mg, is therefore
defined as the lowest Mach number at which a given structure
flying at given atmospheric conditions will exhibit sustained

oscillations about the deflected static equilibrium position.

In most cases, an adequate evaluation of the flutter condi-

18




tion is obtained by considering an infinitesimal perturbation
about the deformed equilibrium positionElZ) since it is an un-
desirable situation to have small motions unstable even if larger
ones are stable. It is then sufficient to analyze a vibration
with exponential time dependence, since all other small motions
can be built up there from by superposition. Hence, theoretical
flutter analysis usually consists of assuming in advance that
all dependent variables are proportional to ei“’t (w real), and
then finding combinations of M and w for which this actually
occurs. This leads to a complex or double eigenvalue problem
where there are two characteristic numbers which determine Mach
number and frequency.,

With the above considerations,the perturbation in the

deflection of the middle surface of the airfoil is given as

(simple harmonic motion)

wt

wix,y,t) = w (x,y) et (3.1)
where w(x,y) is in general complex. As before, take
w(x,y,t) = h(y,t) - xa (y,t) (3.2)
or
W(x,y) et = Ky) el - x Ty)elet (3.3)

From piston theory( 6,) the aerodynamic pressure is

19




326

ey, ) = 2y pMFE 1+ Lot MeesD]
(3.4)
p, Y + 1 ] Z6
-2-—-———[1+(.1...2._._)M...a_.3.(_]%_‘£

Using the thickness distribution equations and definition of

lift as given in Chapter II, the 1ift perturbation per wing

segment 1s
Lo(t) = & [o-i(yp“ c Y1 R elut (3.5)
W90 0 G B IR °

P, (3 ) P. 2 - \
e REN - T I

where

c/2
K = %:r‘a)‘ﬁ' (3.6)

and w is the circular frequency of harmonic motion in radians
per second. ‘As is seen from Eq. (3.6) for reduced frequency
k, w and M are directly related,

In addition to the aerodynamic lift acting on the airfoil,
there will also be a perturbation in the aerodynamic moment,
because the resultant lift perturbation will not of necessity
act through the elastic axis (mid-chord). This moment may be

determined by evaluating the integral




which gives, after some manipulation

My = w0+ (= c*—-;—-l-)—-z ¢ £ P1E G

u
oy y+1 Pe 1Cd Pe iut
LS R Sy N)”(rzw;?*-r““
Defining harmonic 1lift and moment quantities as
L =T elut (3.8)
i i
Ma. = I-Vl-a. ei“ut (3.9)
i i

the factor ei(‘“lc in (3.5) and (3.7) may be dropped. Equations

(3.5) and (3.7) are commonly written in current literature as

_ 1 3 % 2 Hl . -
Lo=5e, Cguw [F2@*il) g + (@+il) o] (3.10)
1

E,
P2 i) g or My iM) E ] (3.1D)

The coefficients L., L

) M are dimension-

La’ L, and M, M,, M, !

2’
less 1ift and moment coefficients which are defined by comparison

of (3.5) with (3.10), and (3.7) with (3.11).

21




The equations of motion of the basic airfoil segment of
length é. will now be determined. The forces acting and the
sign convention used are shown in Fig. 4, It is assumed that
the center of gravity is not coincident with the elastic axis
but is located by the parameter X, (positive behind elastic
axis). This is reasonable because in practice there will be a
control surface actuation system near the trailing edge. It is
assumed that this will not affect the airfoil structurally.
Note that Bisp‘linghoff(12 ) states that no flutter will occur at
supersonic speeds unless the center of gravity is behind the
elastic axis.

The translational and torsional springs with constants
indicated by Kh and Ka are meant to indicate the stiffness
influence coefficients of the particular airfoil section being

considered. Constructing the potential and kinetic energies,

1 2 1 2
Vv = Vi Kh hl + Vi Ka dl (3012)
_ 1 © 32 1 ° ° 2
T = » I (wi) dm =5 J (hi - X ai) dm
1 ° 2 e 9 1 o 2
T = > (hi) l dm - h o, J X dm + 7'(“1) J X~ dm
(3.13)
Applying Lagrange's Equation
d 3 T 3 T 3V
(o) - + = F (3.14)
T a oq % g k
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m hi - Sa ai + I(h hi = I.,hi (3015)
and for Q= 95 Fk = - Ma-
1
I e; - S, by + K a =‘-Mm_1 (3.16)
where
s, = [ xdn = n (P x (3.17)
= 2 2 .2
I, = [ x“dm = n (§° (3.18)
m = j dm (3.19)

m is the mass per é-length of airfoil
T, is the dimensionless mass radius of gyration

X, is the dimensionless static unbalance

Another way of deriving the differential equations of motion is
by means of the flexibility influence coefficients defined
earlier, Then the total deflection at section i may be written
by superposition as

.. Fj

1 1

=
1]
H o~ 2

J
where Fj is the total external force (aerodynamic and inertial)

acting at section j. Therefore




h, = (-mh, + S a + ) (3.20)
i Chij j a % th

Likewise, the total deflection angle at i is

N
o = ) C,.. My
j=1 lJ J

where Mr is the total moment at section j. Then
j

00 *a

a; = Caij (- Iu aj + Sa hj - M“j) (3.21)

Comparison of equations (3.20) and (3.21) with (3.15) and (3.16)

respectively indicates that Kh and Ka are matrices related by

X, ] '

K] = (¢t (3.23)

a [¢]

(3.22)

[c,)

and Kh and Ka are stiffness coefficient matrices as described

above,
Now assuming that the motion of the airfoil may be repre-

sented as a simple harmonic motion, the motion equations become

2 - - _
Kh“h'j - muw Hi+ Sy o - L =0 (3.24)
ij i
K & -1 wla.+S oo K + M = 0 (3.25)
%5 j o i a i oy °

which may be written in matrix form as
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r i 1/ — | --'1 - } R
: 2

B - SO IR - OO I B
| a | a | a

0 | K 0,1 S 0
- ! Q_‘“ — q-‘;x — o - \ J

3\
- L. 0
+___—-(11> = —-—

J 2
By multiplying and dividing the first term in (3.26) by w ,
a more convenient form is obtained as

B | T () |
[]_f%]-[m]:lsa] h -LhL 0
IKa = o

[0, =1 - (1] | M,

SN vt . ’ \ / \ J

Now replacing f.h and M a by their values as given by equations

(3.10) and (3.11), and using (3.17) and (3.18)

[k |
31+ + (o, (L)1 In g x )= (0.0 lL#iL,)]
w

l K
a

(3.28)

The matrix equation (3.28) is most easily solved if it is

rendered dimensionless. In order to do this some new parameters

(3.26)

= - = (3.27)

2
L[m'g' xa]'[%"’wcs ':T(MfiMz)] : [-‘;z]'[m 'gT ri]+[%°mc4 I%(Mfmu)_]_
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must be defined. Dimensionless center of gravity location and

the radius of gyration have been defined by

2 Sa

X, = ¢ = (3.17)
1/2
- (4 sy 3.18)

Ta 2z m (3.

C

Next define a dimensionless vertical deflection given by

vo:a2d (3.29)

Then take dimensionless bending and torsion stiffness matrices,

(K] and K] , as

K] = o m[K] (3.30)
2 ¢ 2 -
KJ = o’ n & 2 ] (3.31)

where w, 1s the fundamental natural bending vibration frequency,
and W, is the fundamental natural torsional vibration frequency
of the wing in a vacuum, The basis for the definitions as given
in Eq. (3.30) and (3.31) is the analogy drawn between the

single degree of freedom systems where wy = /7§;Z;- and

w, = /Ka/Ia and the many degree of freedom system considered

here,  Finally, define a dimensionless mass density ratio as

26

-




b —2 - 2 (3.32)
P, C
and the quantity m is of course given by
1 2
m = IDNTC‘)S (3033)

where p is the mass density of the material out of which the
airfoil is constructed and Pg is the solidity ratio, In terms

of densities, then,

- L T
u 7 ooCT'S (3.34)

Now by substitution of definitions (3.29) through (3.32) into

equation (3.28), the dimensionless flutter equation becomes

whz - | 7 ’_j [ )
I R N e Ik
e o e — ————— b e e o o J__L= J__?
. I 2 wa 2 ~ 2 . -
| (ux 1M ] |l (D)L rgle g ] [ (3] [0
(3.35)

The dimensionless 1lift and moment coefficients are given

with 1 = T/C, the thickness ratio, as

L, = 0
1
L =
2 MK (3.36)
L = _1.2.
3 Mk
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M1 = 0
6 T

M = =

2 0 X “
y .6 1 (3,36 cont)

3 T0 12

_ 1

M“ = T

Substitution of (3.36) into (3.35) gives the flutter equation

in its final form

— 2 " i | - '_\ (
G G ol G | )t g @ |[5] |0

______________ W TN

T

]
w2 . _
ICARCE R K -y 5+ Gge [[5] |0
(3.37)

The matrix equation (3.37) is the flutter equation which
will be solved. Notice that most of the submatrices on the left
are diagonal, there being only two exceptions, [f(h] and [I~(a]°
Notice also that (3.37) is a homogeneous equation in the dis-

placements, If Eq. (3.37) is written in matrix form as

v 0
[A] = (3.37a)
a 0

or in vector form

Q

28




Y -
Av = 0; ¥ = (3.37b)

then nontrivial solutions for (3.37) will exist if and only if
det [A] = O (3.38)

The matrix A will be taken here to have 10 rows and 10 colums,
corresponding to the five sections into which the airfoil will
be discretized. This is sufficient freedom for the determination
of the fundamental mode and flutter frequency. Because there
will be both a bending and a torsional degree of freedom, the
total number of equilibrium equations will be ten. Each of
these ten equations has a real and an imaginary part. This
effectively gives the equivalent of twenty equations for only
five airfoil stations. This is a practical consideration for
the choice of five airfoil stations being sufficient. The
solution with five wing segments requires the expansion of a
tenth order complex determinant. To complicate matters, neither
w nor k nor M are known until the problem is solved. The
solution then is one of trial and error, where w and M are
guessed and k computed from Eq. (3.6), and then these quantities
substituted into (3.38), the determinant is expanded, evaluated,
and compared with zero., Obviously there is little chance that
it will be zero, and because there are two quantities (w and

M) to be arbitrarily chosen, it will take many trials to get an

answer, There is no way around this dilemma unless simplifying
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assumptions are made. One such assumption is that the displace-
ment vector may be written as a sum of the uncoupled bending and

torsional modes of the segmented airfoil, as
5
> - - ——
vl % e + I T G (3.39)

where the &; are normal coordinates which indicate the partici-
pation of -the several normal modes of the system in the general
solution vector., They are therefore also called participation
coefficients, The é'i are the normal modes which are the solu-

tions to the following eigenvalue problems:

& : B o=u’m [c] & (3.40).

i
> -»> 2 >
ea, Pooa =g Ia [ch] a (3.41)
i
Therefore:
2
g =y I [c] @&
C!_ a [» ) a o,
i i i

Eq. (3.39) may then be written in matrix form as

I '_* N
G 4 0 h
V = — :_. —— -E = Q E; E = J - (3a42)
>
10x1 0 : Qa Ea
10x1 ’




So far nothing has been done to eleviate the dilemma involved in
solving Eq. (3.38). However, since the problem requires only
the fundamental flutter mode shape, it will be assumed not only
that v may be written as in (3.42), but also that only the
first few uncoupled bending and torsion modes will make up this
fundamental flutter mode shape. In fact, only the fundamental
uncoupled bending mode and the fundamental uncoupled torsion

mode will be taken to approximate V. Therefore

— | —
ey | 0
L
v = |m==1—=-] I (3.43)
I
10x1 0 | e 2x1
_ T
10x2
A separate analysis was undertaken which showed the
justification of this. In fact, the results indicated that
3 3
h o
l’=" 1 A=/ 100 (3044)
Eh &, 1
2 2

so that the participation of the second modes is of higher order
of magnitude than the first. Higher modes would be expected to
have even smaller participation coefficients.

A way has now been shown to reduce the order of the

determinant in Eq. (3.38). Substitution of Eq. (3.43) into (3.37b)

yields
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> -+
[A] [Ql g = 0 (3.45)
10x10 10x2 2x1 10x1

and premultiplying both sides of (3.45) by QT gives

T > >
[QAQ] ¢ = 0 (3.45a)
2x2 2x1 2x1
and then (3.38) may be replaced by
det [ AQ] = 0 (3.46)

Now the determinant in (3.46) is only of second order and may
be easily expanded.

Next the matrix multiplications indicated in equation
(3.45a) are performed. Because of the form of matrix Q, that is

because

o
)
e N
=
4
o
=‘$
-

->
€
o
1

I
|
I
Q= |===1——13
I
|
|

{
o
o
Q
L
e N,
]
-
1}

the multiplications are especially simple. If [A] is partitioned

as
(A ! oA
1 | 2
[A] = “:“-‘ (3.47)
then




T | I T T
Qh 0 A1 I Az Qh 0 Qh Al Qh I Qh 2 Qa

| AT

Qu Qa A3 Qh | Qa Au Qa

and all of the submatrices on the right side of (3.48) are of
first order and are therefore individual complex numbers.

Now, looking back at Eq.(3.37) , it is seen that every sub-matrix
may be written as a scalar parameter multiplied by a unit matrix

except [kh] and [ka]. Then, defining the following

G [K) Q= K
Q. [KJQ = K
G [ g = Q |
(3.49
q [ Q = q
q [ Q= Q
QM Q= Q
and writing
W, 2
(w_h) = Q (3.50)
[» ]
w 2
(EE) = A (3.51)

equation (3,46) becomes
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. - Q | Q
[y (Khm-Ql)+imi-]:[Q2uxa-—w%+i S F Q]
__._.——._——T---.—| ————————————— =0
[Q, ux * iI-g-ngsli[u raz(iak-QM)'r% ;}Q“*izl%iEQu]
(3.52)

When expanding (3.52), terms may be grouped according to whether
they are real or imaginary. Then in order for the determinant
to vanish, both the real and imaginary parts must vanish separ-
ately, thus giving two equations. Setting the real part equal
to zero gives

8 g - QKA < Q) ¢ S [ v Q- Q)

Q, Q WX 2
31M2u *QQ, %% QQ 1 - Qzquzxi =0 (3.53)

and the imaginary part set equal to zero yields

MQ, - 2 - 6 1
- (KhQA - Q1)+ M Ql ra (Ka)\ - QL;) = m"k‘é‘ (Qqu = Q2Q3)

$qQux, M = 0 (3.54)

. . 2 . .
It will be noticed that k  appears only to the first power in

both (3.53) and (3.54). Solving (3.54) for 1/k° , it is found

that
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2

1 —-Q:(xhszx~Q)+gQ Q-—-—(KA-Q)- 3—%—3-“ M
(3455)

where
Q = 9, Q - 9Q (3.56)

Substituting (3.55) into (3.53) and grouping terms as powers of

A , the following quadratic equation in A is obtained;

2 2 - - 2 =2 - =
A [ura h G.QQOT %-u K Q -0 Q“ur Kh KaQr]

9} X . -
5 o2 Kh 5 M X 1 2
AR Rl e b RV R
2 2 = 2 2 > 5 2 2 X,
*Q Qury, Km't ¥ Q1Qu My K o= g Q Q, 1, '];2—

2
v QQQ N T, T QW XoT - FQ Qwe

Q,? Q2 u X
' ——-z-—‘M t - 300,00, -M—ﬁ-%-QlQZQﬂk 2 (3.57)
2 2x
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2
g'quzquu Ta o g'Qlequu wx, M <

X T 2
© 30000, S - 20, o wx,

-3 Q22Q32x M ©] = 0

a

The solution procedure is: Choose an initial guess M and solve
Eq, (3.57) for A the two roots, Only one of these will
be of interest, the one corresponding to lowest M. Substitute
A and A, into Eq. (3.55) and compute k1 and k2 . Then

from Eq. (3.6)

(C/2) w
M = —]l
1 -7 kl
= C/2 “
M, ﬁaﬁ_l =

Take the lowest value (M1 or Mz) and compare it with the
initial guess value of M. If they agree, the problem is solved.
If not use the new value of M = Ml say (M1 < Mz) and repeat
the procedure., The criterion for convergence will be that the
correct values of M, k, and A satisfy equations (3.53) and
(3.54) to within some prescribed small amount, This will
guarantee that det (QT A Q) is actually close to zero for what

shall be the flutter condition.




Chapter IV
CRITERION FUNCTION

4,1 Energy

The basic criterion function in this study is to be the
energy required for a sequence of flight conditions, the sum
of which represent a mission. Therefore the quantity to be

optimized may be written as

u

¢ = D(t) U(t) dt (4.1)

where D is the total drag, the sum of the pressure drag Dp
and the friction drag Dy U is the velocity (U = Maw),and ty
is the total time required for the mission.

A mission is, however, to be represented by a set of

discrete flight conditions, This allows equation (4.1) to

be recast as

S
¢ = ] D, U t. 4.2)

S = number of flight conditions
D. = total drag in ith flight condition
U. = velocity in ith flight condition

t. = time in it™ flight condition
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and D;, U, and t, are assumed constant in any one flight condi-

tion.

4,2 Pressure Drag

The pressure drag of an airfoil may be found by integrating the
horizontal component of the aerodynamic pressure differential
over the surface of the airfoil, Then, for a strip of length
ﬁ-with a total angle of attack E} = oy oo the pressure

i
drag may be written as

T2 L
Dpi = 2y p, M [ai M (C) ] C N (4.3)
4,3 Friction Drag

The friction drag is defined(lo) as

D, = ro(x) cos t, U) dA (4.4)

and

Tf(x) = friction force per unit surface area of airfoil
1 is a unit tangent vector to the surface
] is the free stream velocity vector.
Taking cos (i’, ﬁ) = cose, and considering the symmetric
double wedge, € has values in the first, second, third, and

fourth quadrants, respectively, of
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e. = 6 + (ao + a.)

e, = 0 - (uo + ai)
(4.5)
53 = § + (ao + ai)
€, = o - (ao + ai)
where
o= tan"! (@ (4.6)

Considering the integral over the surface in (4.4) to be independ-

ent of y over increments of length é ’

Dfi = I?T e (x) cos [-'E(x), fj] ds 4.7)
172
ds = dx [1+ (T/C)Z] / (4.8)
Introducing (4.5) and (4.8) into (4.,7) yields
C
7
I Tf(X) cos (ao + ai) dx (4.9)
_C
7
It is apparent from (4.9) that friction drag is not explicitly

dependent on the thickness of the airfoil,
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According to Nielsen(lol the frictional stress is given

by
CF pm* U2
Tf(X) = -—-—-—-2—-—-—-- (4010)
= 0.370
Cp = ) oY (4.11)
(logy,

The super stars indicate that the quantities distinguished by

them are to be evaluated at the so-called "reference temperature'

T,
The Reynolds Number is given by
*
N U (x+ gb Pe
Re” = r (4.12)
¥a
and also
* . . * 3
p, = mass density of air atT, slugs/ft
*
u; = absolute viscosity at T , slugs/ft-sec.
In terms of (4.11) and (4.12), (4.10) may be expressed
as

c. o -2.584
U P oo

*
Ha

&
T = 2370, 2 (1o,

(4.13)

It is advisable to put (4.13) in a form dependent on fewer
parameters. With this in mind, T* will first be found in
terms of T , the free stream temperature, which will be known

when the altitude is known. To begin, define




T, =T, 1+ Lol (4.14)

where Ts is the stagnation temperature. In addition introduce
a quantity, T which is the plate temperature at the prescribed
Mach number. Then

X _ 1 -
™= T, +5 (T, -T)+022r (Tg-T) (4.15)

The quantity r is the '"recovery factor' and is given by

1
*
gu, C* 3 T, - T,
k* T - T
S o
where
TR = recovery temperature (wing equilibrium temperature)
g = acceleration due to gravity
Cp* = specific heat of air at T
k* = themmal conductivity of air at ™

The recovery factor '"r'" is a measure of how close TR approaches
Ts' the free stream stagnation temperature.

For turbulent flow, r has been found to be approximately
constant at

r = 0,90 (4.17)

and the ratio of specific heats," v ",is also approximately
- constant at 1.4,
One further assumption is that there is no heat loss from

the plate due to reradiation. This means that
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T = T (4.18)

Again, the object of all this is to get equation (4.13)
into a form which may be easily evaluated given the flight
conditions imposed on the structure, i.e. M and T_ , because

T_is prescribed when the flight altitude is given. Now

Mo = U = (v RT)Y? M (4.19)
_ 2, 20
R = 1718 ft"/sec”°R (4.20)
and
* P (4,21)
P, = -~ °
RT

Ref, 13, by a process of curve fitting, has obtained an

. *
expression for W, as

& 32
u * = 002770 x 10 T (4‘22)

a (" + 198.7)

Substitution of (4.20), (4.21), and (4.22) into (4,13) yields

'2.584
]

T 1.22x10%p_11/2

2 ‘e
To(x) = 0.259 p M* — [log
£ < 10 ™ 5/2

(T*+198.7)M(x+ )

(4.23)
To eliminate T" from (4.23), use equations (4.15) and (4.16)
with assumptions given in equations (4.17) and (4.18) to get,

finally
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0.259p, 1.22x10%Mp_[T_(1+0.134%)+198.7] c -2.584
12(x) = ———emem [log (x+ 1]
£ LU 2 .5/2 z
(1+0,13M2) T2 11+ 015 M |
(4.24)

Substitution of (4.24) into (4.9), and using a numerical
integration technique, the friction drag per wing segment may

be determined.

b3




Chapter V
SYNTHESIS

5.1 Normalized Composite Behavior Function and Synthesis Method

The basic analysis for the system herein considered is
contained in Chapters I through IV. Considering the behavior
functions, root angle of attack (ao) is given by equation (2.34),
leading edge tip deflection (wT) is given by equation (2.36 ),
stress at the root (o) is given by equation (2,50 ) and flutter
Mach number is obtained by use of equations (3.6), (3.53), (3.54)
(3.55), and (3.57). Also the principal criterion function (¢),
the total energy, is given by equation (4.2) and (4.3) and (4.9)
and (4.24).

In a given design situation, each of the behavior functions,
except flutter Mach number, will have a prescribed value which
may not be exceeded. The flutter Mach number, on the other hand,
must be greater than the actual flight Mach number. These
prescribed values of the behavior functions will in general be
different for each flight condition in the mission.

Consider that the number of flight conditions composing a
mission is S, Then for each of these S flight conditions, it is
advantageous to have the ability to prescribe different values
in different flight conditions for each of the behavior functions.
For instance, the root angle of attack will increase as the

altitude increases and hence a larger acceptable value may be
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desirable at higher altitudes, Likewise, because of material
fatigue, the allowable stress should be less in a flight condi-
tion of frequent occurence than in a flight condition which
seldom occurs,

Each flight condition will then have prescribed values for

each behavior function., The qth

flight condition would then be
constrained by

1) maximum root angle of attack AMAX q

2) maximum leading edge tip deflection DMAX q

3) maximum root stress SMAX q

4) &£lutter Mach number MF q

In the case of the traderoff study, the maximum allowable wing
weight, WMAX, will be included in the above list,

A simple way to handle these four behavior functions is
to normalize them and to then construct a composite behavior

function. Consider that an analysis has been completed and

values of %q? WTQ’ % and MFq for q = 1,2, ..., S have been
obtained. Then using the prescribed quantities introduced above,
i ,

define for the qt" flight condition,

- (a) q (wp) q M
= Mex g TR ST e ) 6D

where the quantity ;; assumes the value of that ratio on the
right of (5.1) which has the maximum value. Further, consider

a function ¢ such that
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¢ = Max [Zl, Ty v eeer By eees Og ] (5.2)
where again ¢ assumes the value of the maximum 3& on the
right of (5.2). The quantity ¢ will be called the composite
behavior function. A design for which

¢ < 1.0 (5.3)
is an acceptable design while a design for which

¢ > 1,0 (5.4)
is one in which one or more of the behavior constraints are
violated. Obviously a critical design is one for which ¢ is very
close to unity., Figure 7 shows the curve ¢ = 1 for the test
case synthesis of the following chapter.

One further ingredient is required for synthesis, and it
is a method of selecting a new design once the acceptability (¢)
and merit (¢) of an initial design have been determined, For
this study, the gradient-steep descent, alternate step method
was selected, principally because the design variable space(s)
is two dimensional (i.e. T and C are the design variable space
coordinates) and therefore, only two alternate step directions
exist, A graphical description and basic flow chart of this
method are contained in Figures 5 and 6.

Consider that the criterion function ¢(;i) is known for an

acceptable design point §1, where
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X = (5.5)

Then, for some new design point near the original point

oy = ey + ' - 3y g, (5.6)

i

1

The new design pointjc)1+ is to be reached from the old point

by moving in the gradient direction such that the value of the
criterion function assumes a more optimum value, Then
o s nvo (5.7)
i
where h is a parameter that determines the length of the move.

Comparing (5.6) and (5.7) it is found that

hvo!l = oG -eah

(5.8)
. v e
i
i
Now, defining a quantity which denotes the percentage change in

¢ from the initial to the new point as

o L Lo @Y

A . (5.9)
¢ (XY)
and then comparing (5.8) with (5.9), it is found that
i
h o= A2 (XD (5.10)

[v 0].1°[7 o|]
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ok
[v of;1.[v o]

+1+ »i
x1=x + A {

} Vel (5.11)

The quantity A as defined by (5.9) is a negative number
A< 0 (5.12)
for the case when the move is made from an acceptable initial
point to a new point, When the move is made from an unacceptable
initial point,
A> 0 (5.13)
The fundamental criterion function in this study is not
differentiable. A finite difference approximation to the true
gradient was therefore resorted to.

In two dimensions, the gradient is given by

- ->
vo (1,0) = Lim 2 (T+ A'g,%) - T 1T L, 8 (TZCZ:AC) % (T,C) j

AT+0 (5.14)
AC+0
and the partial derivatives can be approximated by computing, for
the T component

o (T + AT,C) - ¢ (T,0)

5.15
= ( )
and for the C component

¢ (T, C+ AC) - &(T,0) (5.16)
AC

for progressively smaller values of AT and AC until their change

from the previous calculation is less than some desired amount.
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This will yield a very good approximation to the gradient as
long as the curves of ¢(T,C) = constant are smooth. In order
not to introduce any bias into the gradient comppnents, the

actual computation used

o (T +34T,0) - ¢ (T - 3 4T,0)
AT

(5.17)

for the T component and

(T,C + +4a0) - o (T,C - % 20)
Zz 7
AC

(5.18)

for the C component.

Redesign points are located using (5.11) subject to (5.12)
or (5.13). When finally a point is found at which ¢ takes on
the value unity, alternate steps are taken tangent (Fig.5) to
the constant criterion function (merit) curves, to determine if
a point can be found for which ¢ < 1.0, If such a point is
found, a new gradient is computed at this point and moves are
again made using (5.11). If, however,no point can be found for
which ¢ < 1,0, the present point at which ¢ is unity is called
the optimum design and the synthesis is complete.

The alternate tangent steps described above use the com-
ponents of the gradient. Since the constant ¢ curves are not
straight lines the points obtained in these alternatebsteps will
lie on constant ¢ curves of higher magnitude than the original
point. An iterative process is required to get back on the same

¢ curve that the alternate step was taken from., After this is



done the point is checked to determine if it is acceptable or
unacceptable.
5.2 Synopsis
In this section of this chapter, a statement of the
problem will be given in terms of equation numbers and based on
the format given in the introduction,
I. Given:
(A) the fixed parameters of the system:
1. span, £, pog
2, material density; p
3. required payload; Lp
(B) the prescribed flight conditions
1. Number of flight conditions; S
2, qth flight condition parameters

T,)

o ? "o

(a) Altitude; ALTq (p, » 3, » 0
9 9 9 9

(b) Mach number; Mq
(c) time in flight condition; tq
(C) the prescribed behavior constraints for the qth

flight condition

1, maximum root angle of attack; AMAX q

2, maximum leading edge tip deflection; DMAX q

3. maximum root stress; SMAX q

4, flight Mach number; Mq (to be less than or equal
to the flutter Mach number)

5. (trade-off study only) maximum wing weight; WMAX




(D) Appropriate side constraints on the design parameters,

T and C such that

LBX < T

UBX

I

and
LBY < C < UBY
where LBX and LBY are lower limits of T and C imposed by
fabrication techniques and kindred things while UBX and UBY are
corresponding upper limits on T and C.

11, Determine:

The design variables , T and C such that the side constraints
are not violated and the composite behavior function ¢ as defined

by (5.2) satisfies (5.3) and where the individual parts of (5.2)
are given by equations (5.1), (2.34), (2.36), (2.50), (3.6),
(3.53), (3.54), (3.55), and (3.57), and finally that the criter-
ion function ¢ as given by (4.2), (4.3), (4.9) and (4.24)
assumes an optimum value. Redesigns are made using (5.11) subject
to (5.12) or (5.13).
5.3 Trade-off Study

In performing the trade-off study, the system will be
optimized first with no upper limit on weight (i.e. WMAX taken
sufficiently large to exert no influence on the optimum). This is
the problem as stated in section 5.2, and yields an optimum design

based on energy. The corresponding total airfoil weight is given

by

WGT -og & TC oy (5.19)

=
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where g is the acceleration due to gravity.

Next a reduced maximum allowable weight is specified such
that WMAX is less than the weight (WGT) obtained for the energy
optimum, and again the system is optimized based on energy. The
penalty for this reduced weight is readily seen as an increase in
the optimum energy.

In this manner a curve of optimum energy vs. allowable
weight will be plotted. Subsequent investigation of this curve
may result in a design more realistic than the optimum energy

design would be.
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Chapter VI
EXAMPLE SYNTHESES AND RESULTS

Several example systems were optimized using the completed
computer program,
1.) Test Case

This is a system which has a mission consisting of one
flight condition. Complete data are contained in Table 1, and
Figure 7 shows the design path from the initial design to the
optimum energy design point., The value associated with each
merit contour in Figure 7 gives the magnitude of the total
drag on the airfoil for design points on that contour. This
was done by arbitrarily taking U=t =1 in (4-2),

The 1lift drag ratio of the optimum design obtained is 4,0.
Assuming the skin friction coefficient to be 0.003(10), Hilton(14)
gives the maximum 1ift-drag ratio for a 5.9% double wedge
airfoil flying at M = 3,0 as 5.6,

The flutter constraint is shown in Figure 7 as a straight
line., This is true only in the region plotted in Figure 7,

Also, the root angle of attack is a straight line in this
region, The slight slope of the a = constant lines may be
explained by considering the following: If the chord C is
fixed, and the depth T is increased, the wing is made more
rigid, thus necessitating a greater root angle of attack to
compensate for the smaller elastic twist angle at each spanwise

station,
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2.} Production Run Case ML

The mission for this case contains three flight
conditions., Data for these are to be found in Table 2 »
The synthesis path is shown in Figure 8,

The optimum design is a 6,8% double wedge, whereas
for the preceding test case it was a 5,9% double wedge,

It should be noted that only behavior constraints which
at some point compose part of the composite constraint curve

are shown in Figure 8, Root stress is, therefore, not shown.

3.) Trade-Off Study on Case Ml

A plot of allowable airfoil weight (1bs.) vs. optimum
energy (ft.-1bs.) is shown in Figure 9. The data points
used to construct this curve are tabulated in Table 3. Table

3 also contains the values of the design and behavior
variables associated with each point,

Run number (1) in Table 3 represents the absolute
minimum weight design. No acceptable design is possible for a
weight less than 3,015 lbs., Run number (7) represents the
optimum design based on energy. The associated weight is
quite high at 5,470 lbs, In run numbers (2) through (6) the
weights listed are prescribed maximum weights, and the associated
energies are the minimum energies possible at the corresponding
prescribed maximum weights. The curve in Figure 9 may thus
be used to obtain the energy associated with a design which has

a prescribed maximum weight less than the weight obtained by
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pure energy optimization and greater than the absolute minimum

weight,

4,) Production Run Case M2
This is essentially the same as Case M1, The behavior
constraint limit on root stress is changed to make this
constraint active. Table 4 contains the complete details
of this case. It is seen (Table 4) that root stress in the
second flight condition and flutter in the third are active.
The contours of energy, root angle of attack, flutter
Mach number, leading edge tip deflection, and root stress
contained in Figures 7 and 8 were obtained only for the purpose
of illustrating the synthesis path. These contours were
obtained by extensive gridding of the design space after the
synthesis was complete and the regioﬁ containing the optimum

was known,
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Chapter VII
CONCLUSIONS AND RECOMMENDATIONS

This study has demonstrated the feasibility of applying
the synthesis concept to a system which has an aeroelastic
technology. As itstands, the problem solved is admittedly of a
highly idealized nature, Future effort may be directed to
making the problem more realistic by consideration of the
following:

1.) Formulate the wing as a plate rather than as a beam-
type structure, In view of the optimum design obtained
based on energy, this is a necessary change, because
the chord length (C) is not small compared to the

span ( 2 ).

2.) Include the effects of a control system at the trailing

edge.
3,) Use the skin thickness (d) as a design variable.

4,) Consider the wing to be tapered and/or swept.
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FIGURE 3B
PRESSURE DISTRIBUTION AT TYPICAL SEGTION A-A

FIGURE 3C
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DISPLACEMENT DISTRIBUTION AND RESULTANT

PRESSURE (LIFT) PER UNIT SPAN AT TYPICAL
SECTION A-A
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AMAX(S)
ANALI (X,Y)
ATA(S)
BOUND
BSC(X,Y)
C, Y

CCOMP

CHB (X,Y)
CHECK
aiT()

TABLE 5 Program Variable Names

upper limit on o in Sth flight condition

procedure which determines MF’

root angle of attack

prevents diverging alternate step

normalization procedure for Ch..

airfoil chord "

gradient component in C direction at a bound
point (¢=1)

bending frequency normalization procedure

tests side constraint violation

torsional frequency normalization procedure

CONSTRAINT (X,Y) composite constraint function (¢) procedure

DMAX(S)
E
ENG(X,Y)
EPS

EPN

FR

G

L, LO

LF
LT

T2

upper limit on W

Young's Modulus

procedure for determining ¢ , the total energy
error parameter for TEST( ) |

error parameter for ENG( )

frequency ratio Q

shear modulus

number of flight conditions

“h

Ly total 1lift

W
o




MAR

MAS (X, Y)
MQH(S)
MOMNT

N, NO
NORM(X,Y)
NRMBD

NRMTR
PER

PDRAG(X,Y,S)
PRES(S)
RHO

RHOA (S)

S
SKNEN(X,Y)
SMAX(S)
SPAN
STR(S)

T1, Cl

T, X
TCOMP

TEMP(S)
TEST(X,Y)
TIME(S)

energy per flight condition procedure

wing segment mass

flutter Mach number in ST flight condition
Mt

number of wing segments

gradient routine

_)
“h
-
€a
move size control parameter

<>
procedure for Wry O Oy O, Qp
pressure p_
airfoil material density (lbs/in>)
air density o_
flight condition specifier
skin friction stress procedure e
upper limit on o
L

To0t Stress g

design variables after a tangent move

total airfoil depth

gradient component in T direction at a bound
point
free stream temp, T_

tests ¢ and determines appropriate move

h

flight time in S'" flight condition

7>



T4

TSC(X,Y)
VAIR(S)
VEL(S)
WGT (X, Y)
XCOMP
YCOMP

normalization procedure for C
1)
free stream velocity of sound a_

Ma_
total wing weight
gradient component in T direction

gradient component in C direction
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APPENDIX

The computer program was written in the Algol 60 Compiler(ls)
for the Univac 1107 Electronic Computer. This appendix contains
an explanation of the program, a table of program variable
names, and a sample program listing,

Extensive use is made of the procedure routines of this
compiler. A procedure is an independent subprogram with speci-
fied formal parameters. Procedure names may be assigned numerical
values by designating the procedure as a ''real" procedure.

Eight basic procedures are used in the completed program,
They are ANAL1, PDRAG, ENERGY, NORM, CONSTRAINT, TEST, BOUND,
and CHECK, These and others are listed in Table 5. The
basic procedures are discussed below:

1) PROCEDURE ANAL1(X,Y)

This procedure computes the flutter Mach number. The
formal parameters shown in the procedure heading above corres-
pond to the actual design variables T and C respectively. When
the procedure is called, X is replaced by the current value of
T, and Y is replaced by the current value of C,

In order to compute the flutter Mach number, certain
preliminary calculations must be made. First, the flexibility
influence coefficients, C __and G~ are computed using (2.17)
and (2.21), Then the fund;%ental u;%oupled bending and torsion
mode shapes (Eh, Ea)and frequencies (wh, wa) are computed using

a matrix iteration technique on (3.40) and (3.41). Next, the

7



matrices Ch and Ca are inverted to obtain the s*.rfness
Yy ;

i]
matrices Kh and Kd . These are then normalized as indicated
ij ij - -
in (3.30) and (3.31) to give Kh.. and K . Finally the matrix
1j ij -

miltiplications indicated in (3.49) are performed to give Kh’
ka' Ql, Qz’ Qa' and Qu . These preliminary results are then
used along with equations (3.6), (3.53), (3.54), and (3.57) to

evaluate the flutter Mach number for each flight condition.

2) REAL PROCEDURE PDRAG (X,Y,S)

This procedure computes g a, W, ﬁt’ o, and Dpo The
pertinent equations are (2.32), (2.27), (2.34), (2.15), (2.50)
and (4.3). The formal parameter "S" in the heading specifies
the flight condition to which the above results pertain,

The value Dp is assigned to the name of the procedure

as

PDRAG = Dp (A.1)
for each succeeding flight condition,

3) REAL PROCEDURE ENG(X,Y)

This procedure is essentially a Simpson's Rule integration
routine which is necessary to evaluate the integral in (4.9) and
thus to determine the friction drag. Let the evaluated integral
for the sth flight condition be denoted by Vge Then introduce a

real procedure MAR such that the argument of MAR is

MAR(T,C,¥,s) = [PDRAG(T,C,s) + 3¢ v] (U (t)  (A.2)
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so that given T, C, and Yoo MAR yields the total energy to com-

plete the sth

flight condition., More than one flight condition
necessitates repeating (A.2) for each one.

In the general case when (A.2) must be repeated for S
flight conditions, the total energy required to accomplish these
S flight conditions (¢) is assigned to the procedure name ENG
as

S
¢ = ENG(T,C) = ]  MAR (T, C, ¥gs S) (A.3)
s=1
4) PROCEDURE NORM(X,Y)

This is a routine for computing the components of the
gradient to the constant merit curves. These gradient components

are then normalized to give move direction components as

IS
XCQVIP - v q) . v ¢ (Aus)

¢'C

SN (A.6)

YCOMP

where the comma indicates differentiation,
5) REAL PROCEDURE CONSTRAINT(X,Y)
This procedure computes the value of the composite

constraint function as given by (5.2) and assigns this value to
the procedure name CONSTRAINT. It is used in conjunction with

procedure TEST to determine the appropriate move direction.

6) PROCEDURE TEST (X,Y,ON,FREE,NOT)
This routine determines if a design is acceptable by

computing the composite constraint function ¢ , The code

9



name for ¢ is CONSTRAINT(X,Y).
ON, FREE, and NOT are the program move locations of the

three possible situations, as

ON ; ¢ = 1
FREE; ¢ < 1 (A.7)
NOT ; ¢ > 1

7) PROCEDURE BOUND (X,Y, XCOMP, YCOMP)

This procedure is used after an alternate step to get back
on a merit contour of the same value as that from which the move
was taken,

The values MERON, TCOMP, and CCOMP are the stored values
of ¢, XCOMP, and YCOMP corresponding to the bound point (¢=1)

from which the alternate step move was taken.

8) PROCEDURE GIECK (X,Y, XCOMP, YCOMP, XS, YS)

This checks the values of the design variables against
those of the side constraints after a move is taken but before
any part of the analysis is undertaken. If a side constraint is

1 violated, the move distance is reduced until it is not. XS and
YS are move direction control integers which take on values of
+1 or -1 depeading on where the move was taken from and the type
of move made, i.e., gradient direction or tangent direction.

A block diagram using the procedures and symbols defined
above is given in Fig, 10. In Fig. 10, the procedures ANAL1,
PDRAG, and ENG will be grouped together under the name ANALYSIS

as




ANAL1
ANALYSIS = { PDRAG (A.8)
ENG

for ease of presentation.
The computer program symbols with explanations are
listed in Table 5. The appendix is concluded with a complete

sample program listing.
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